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Abstract. The thermal fluctuations that exist at very low temperature in disordered systems are often
attributed to the existence of some two-level excitations. In this paper, we revisit this question via the
explicit studies of the following 1D models (i) a particle in 1D random potentials (ii) the random field Ising
chain with continuous disorder distribution. In both cases, we define precisely the ‘two-level’ excitations and
their statistical properties, and we show that their contributions to various observables are in full agreement
at low temperature with the the rigorous results obtained independently. The statistical properties of
these two-level excitations moreover yield simple identities at order T in temperature for some generating
functions of thermal cumulants. For the random-field Ising chain, in the regime where the Imry-Ma length
is large, we obtain that the specific heat is dominated by small non-universal excitations, that depend on
the details of the disorder distribution, whereas the magnetic susceptibility and the Edwards-Anderson
order parameter are dominated by universal large excitations, whose statistical properties only depend on
the variance of the initial disorder via the Imry-Ma length.

PACS. 75.40.Cx Static properties – 05.40.-a Fluctuation phenomena, random processes, noise,
and Brownian motion

1 Introduction

1.1 Disordered systems at very low temperature

One of the most important feature of disordered systems
is that they may present states that have an energy very
close to the ground state energy but which are very differ-
ent from the ground state in configuration space. For the
spin-glasses, the debate between the droplet and replica
theories concerns the probabilities and the properties of
these states. In the droplet theory [1], the low-temperature
physics is described in terms of rare regions with nearly
degenerate excitations which appear with a probability
that decays with a power-law of their size. In the replica
theory [2], the replica symmetry breaking is interpreted as
the presence of many pure states in the thermodynamic
limit, i.e. the nearly degenerate ground states appear with
a finite probability for arbitrary large size.

More generally, the statistical properties of the nearly
degenerate excitations (their numbers, their sizes, their
geometric properties, the barriers separating them, etc.)
are interesting in any disordered system, since they govern
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all properties at very low temperature. In particular, a
linear behavior in temperature of the specific heat

C(T ) = bT +O(T 2) (1)

seems rather generic for a large class of disordered models,
ranging from spin-glasses where this behavior is measured
experimentally [3] and numerically [4], to one-dimensional
classical spin models where this behavior can be exactly
computed via the Dyson-Schmidt method [5]. This lin-
ear behavior of the specific heat has been also obtained
recently for classical disordered elastic systems via the
replica variational method [6]. In this respect, the infinite-
ranged spin glass models are anomalous since the first
term of the specific heat is only of order T 2 [7,8]. The
leading term of the specific heat at low temperature has
also been studied recently in various quantum disordered
models, and is still under debate between linear C ∼ T [9],
quadratic C ∼ T 2 [10] and cubic C ∼ T 3 [11].

The linear behavior of the specific heat (1) is of course
reminiscent of the same behavior in ordinary glasses,
where the usual description involves a phenomenological
theory of two-level systems [8,12,13]. Whereas the identi-
fication of these two-level systems in a microscopic theory
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has remained problematic for structural glasses (see [14]
for recent discussions), this problem seems simpler in dis-
ordered models, where concrete proposals have been made.
In the context of spin-glasses for instance [3], it has been
proposed a long time ago that the two-level excitations
are clusters of spins that can be flipped with respect to
the ground state, and that the associated joint probabil-
ity N(ε, v) of the energy ε and barrier v determines vari-
ous static and dynamical properties at very low temper-
ature [15]. However, the computation of this probability
distribution N(ε, v) is difficult except for very small clus-
ters containing only a few spins [15]. This is why the statis-
tics of large excitations relies on some scaling assumptions
in the droplet theory [1]. In recent years, there has been
a lot of numerical efforts to characterize the distribution
and the topology of these large low-energy excitations [16].

There exists a special class of disordered models for
which exact remarkable identities for thermal fluctuations
have been obtained [17]. The Hamiltonian of these models
have a deterministic part which consists in quadratic inter-
actions and a random part whose statistics is translation
invariant. The simplest of these systems is the so called toy
model [18] defined by the one-dimensional Hamiltonian

Htoy =
g

2
x2 + V (x) (2)

where the random potential V (x) is a Brownian motion
presenting the correlations

(V (x) − V (y))2 = 2σ|x− y|. (3)

The statistical tilt symmetry leads to the following result
for the generating function of thermal cumulants averaged
over the disorder [17]

ln〈e−λx〉 = T
λ2

2g
. (4)

This identity is particularly interesting at very low tem-
perature, since it predicts a linear behavior in T of the
second cumulant. In a previous work [19], we have explic-
itly shown that the rare configurations with two nearly
degenerate minima ∆E ∼ T actually give the full exact
second cumulant of (4). The statistical tilt symmetry is
also present in the models of directed polymers in random
media, and we refer the reader to the references [20,21] for
a detailed discussion of the identities on thermal fluctua-
tions and their interpretation in terms of nearly degener-
ate paths.

1.2 Goal and results

The above presentation on the properties of disordered
systems at very low temperature, although very incom-
plete, already shows that generically, various observables
exhibit variations at order T in temperature, that can be
related to the statistical properties of nearly degenerate
excitations. The aim of this paper is to revisit this ques-
tion in some one-dimensional models to identify precisely

the ‘two-level’ excitations and their statistical properties,
in order to compare their contribution to various observ-
ables at order T with the rigorous results that can be
obtained independently.

1.2.1 Results for one particle in a random potential

We will first consider the equilibrium of a particle in ran-
dom potentials of the following form

H(x) = H0(x) + V (x) (5)

where H0 is the non-random part of the Hamiltonian, and
where the random potential V (x) is a Brownian poten-
tial (3). As explained above, the toy model H0 = g

2x
2 is

very special since it satisfies exact identities (4) as a conse-
quence of the statistical tilt symmetry. Here we show that
for a large class of deterministic part H0, the following
temperature expansion holds for the generating function
of thermal cumulants

ln〈e−λx〉 = −λxmin + T
λ2

2

∫ +∞

0

dyy2D(y) +O(T 2) (6)

where xmin is the disorder average of the position xmin

where H(x) is minimum, and where D(y) is the probabil-
ity to have two degenerate minima in the system separated
by a distance y. The thermal fluctuations of these mod-
els are thus directly related to the presence of metastable
states in rare disordered samples. In particular, the sus-
ceptibility

χ ≡ 1
T

(〈x2〉 − 〈x〉2) (7)

has for average a finite value at zero-temperature

χ =
∫ +∞

0

dyy2D(y) +O(T ) (8)

but only the samples with two nearly degenerate min-
ima contribute to this zero-temperature value. The typ-
ical samples with only one minimum have a susceptibility
that vanishes at zero temperature. This type of behavior
was found numerically for the random directed polymer
model [24]. We will show that the relation (6) is in full
agreement with the exact results corresponding to the two
soluble cases

(i) the pure Brownian potential H0 = 0 on a finite
interval x ∈ [0, L];

(ii) the biased Brownian potential H0 = fx on the semi-
infinite line x ∈ [0,+∞[.

1.2.2 Results for the random field Ising chain

We will then consider the one-dimensional random field
Ising model, in the regime where the Imry-Ma length LIM

representing the typical domain size at zero temperature
is large. In contrast with models (5) with only one degree
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of freedom, where the low-temperature properties are gov-
erned by the rare samples having two nearly degenerate
ground states, the systems with many degrees of freedom
are well described by disorder averaged values in the ther-
modynamic limit, since the average over the disorder is
like a spatial average. As a consequence, the low temper-
ature properties are governed by the rare regions that
presents nearly degenerate excitations. We describe in de-
tail the rare nearly degenerate excitations and evaluate
their contribution to the low temperature behavior of var-
ious observables. The density ρ(E = 0, l) of excitations
of length l contains two contributions, involving either a
single domain wall, that has two nearly degenerate opti-
mal positions, or a pair of neighboring domain walls, than
can appear or disappear with almost no energy cost. Our
analysis allows to obtain that the specific heat [12]

C(T ) = T
π2

6

∫
dlρ(E = 0, l) +O(T 2) (9)

is dominated by small non-universal excitations of length
l ∼ 1, that depend on the details of the disorder distribu-
tion, whereas the Edwards-Anderson order parameter

qEA = 〈Si〉2 = 1− 2T
∫ +∞

0

dl lρ(E = 0, l)+O(T 2) (10)

and the magnetic susceptibility

χ ≡ N

T

(
〈m2〉 − 〈m〉2

)
= 2

∫ +∞

0

dl l2ρ(E = 0, l) +O(T )

(11)
are dominated by large excitations whose length l is of
order of the Imry-Ma length LIM , and whose properties
are universal with respect to the initial disorder distribu-
tion, since they only depend upon its variance. We will
then compare with the exact results available from the
Dyson-Schmidt method [22].

1.2.3 Organization of the paper

The paper is organized as follows. The Section 2 is
devoted to the equilibrium at low temperature in the
one-dimensional potentials (5). The Section 3 concerns
the analysis of two-level excitations in the random field
Ising chain, and their influence on various observables.
Appendix A contains some exact results on thermal cu-
mulants in the Brownian potential, that are useful to
show the exactness of the two-level description presented
in Section 2.

2 Equilibrium of a particle in one-dimensional
random potentials

2.1 Effective model at order T in temperature

In typical samples with Hamiltonian (5), there is only
one minimum. In [23], it was moreover shown that the

x1 x2

=x Lx = 0

y

Fig. 1. Example of a random potential presenting two nearly
degenerate minima situated at the positions x1 and x2. The low
temperature equilibrium properties are completely determined
by the probability D(y) over the samples that there exist two
nearly degenerate minima separated by a distance y.

typical extension of the Boltzmann distribution around a
minimum for a pure Brownian potential is given by the
thermal length lT = T 2

σ , that comes from the Boltzmann
factor e−βV (x) with the typical behavior V (x) ∼ √

σx.
For the other models (5) with regular deterministic part,
the leading behavior at small distance is still given by the
Brownian potential V (x), and thus the same argument
can be applied. As a consequence, for all potentials (5),
the typical fluctuations around a minimum are of order
∆x ∼ T 2 at low temperature, and thus do not contribute
at order T .

We now consider the configurations presenting two al-
most degenerate minima H(x1) � H(x2) situated at x1

and x2: see Figure 1. To compute their contribution at
order T , we may neglect the spatial extension of order
lT ∼ T 2 around each minimum, and replace the thermal
measure by two delta peaks

e−βheff = pδ(x− x1) + (1 − p)δ(x− x2). (12)

The respective Boltzmann weights p and 1−p are given by

p =
e−βH(x1)

e−βH(x1) + e−βH(x2)
=

1
1 + e−βE

(13)

where E = H(x2) − H(x1) is the small energy differ-
ence between the two minima. Since we are interested
in a window of size |E| < T , as T → 0, the probabil-
ity to have two almost degenerate minima situated at x1

and x2 with an energy difference E can be considered
to be uniform in the energy leading to the approxima-
tion ∼P (E = 0, x1, x2)dE. Here we choose the convention
that y = x2 − x1 is of arbitrary sign. Then to avoid dou-
ble counting, we define x1 as the true minimum, so that
E ≥ 0. As in the study of the rare events in [33,34], the av-
erage over E of the quantities of interest can be performed
by integrating over E ∈ [0,+∞[. More precisely, we intro-
duce the symbol 〈〈..〉〉 to denote the following average over
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configurations with two degenerate minima

〈〈A(p, x1, x2)〉〉 ≡
∫
dx1

∫
dx2

∫ +∞

0

dE P (E = 0, x1, x2)

×A

(
p =

1
1 + e−βE

, x1, x2

)
. (14)

At this point, it is important to stress here that the
measure 〈〈.〉〉 is not normalizable, in the sense that 〈〈1〉〉
diverges, but has only a meaning when the observable A
vanishes when only one minimum exists, that is for p→ 1
or for y → 0. As first examples of the measure defined
above, let us compute the lower cumulants of the position.
The variable (x−〈x〉) is (1−p)(x1−x2) with probability p
and p(x2 − x1) with probability 1 − p, leading to

c2(T ) ≡ 〈(x − 〈x〉)2〉
= 〈〈p(1 − p)(x1 − x2)2〉〉 +O(T 2) (15)

=
T

2

∫
dx1

∫
dx2P (E = 0, x1, x2)(x1 − x2)2.

(16)

Similarly, the fourth cumulant

c4(T ) ≡ 〈(x− 〈x〉)4 − 3〈(x− 〈x〉)2〉2〉 (17)

can be computed as follows

c4(T ) =
〈〈
p(1 − p)(1 − 6p+ 6p2)(x1 − x2)4

〉〉
+O(T 2)

= 0 +O(T 2). (18)

The vanishing result is thus the consequence of a special
cancellation of two terms of order T . These cancellations
actually occur at all orders, as already noted in [20] for
the random directed polymer model. We now present a
proof within the effective model (12).

2.2 Generating function of thermal cumulants
at order T in temperature

We now consider the partition function of the effective
Hamiltonian (12) with a source λ

Zeff (λ) =
∫
dxe−βheff −λx = pe−λx1 + (1− p)e−λx2 . (19)

The generating function of disorder averages of the ther-
mal cumulants can be now expanded in temperature as as

lnZeff (λ) = −λx1 +
〈〈

ln
(
p+ (1 − p)e−λ(x2−x1)

)〉〉

+O(T 2). (20)

Since x1 has been defined as the true minimum xmin of
the Hamiltonian H(x), and since the variable y = x2 − x1

has zero odd moments, we may rewrite

lnZeff (λ) = −λxmin +
1
2

× [〈〈ln (p+ (1 − p)eλy
)

+ ln
(
p+ (1 − p)e−λy

)〉〉]

= −λxmin +
1
2

∫ +∞

−∞
dx1

∫ +∞

−∞
dyP (E = 0, x1, x1 + y)

×
∫ +∞

0

dE ln

[(
1 + e−E/T eλy

) (
1 + e−E/T e−λy

)
(1 + e−E/T )2

. (21)

It turns out that the integral over the energy difference
variable E yields the very simple result

∫ +∞

0

dE ln[

(
1 + e−E/T eλy

) (
1 + e−E/T e−λy

)
(1 + e−E/T )2

=

T

∫ 1

0

dw

w
ln[

(
1 + w2 + 2w cosh(λy)

)
1 + w2 + 2w

=
T

2
λ2y2. (22)

Using the symmetry in y → −y, the final result reads

lnZeff (λ) = −λxmin+
T

2
λ2

∫ +∞

0

dyy2D(y)+O(T 2) (23)

where

D(y) =
∫ +∞

−∞
dx1P (E = 0, x1, x1 + y) (24)

represents the probability to have two degenerate minima
separated by a distance y ≥ 0.

The conclusion is thus that the exact identities for the
thermal cumulants (4) derived from the statistical ‘tilt’
symmetry [17] are in fact true at order T for all the mod-
els (5) that do not present the statistical tilt symmetry.
The equation (4) for the toy model (2) is a particular case
of (23) with xmin = 0 and

∫ +∞
0

dyy2D(y) = 1/g (see [19]
for the explicit computation of this second moment).

2.3 Disorder averages of the moments at order T
in temperature

Similarly, the even moments of (x−〈x〉) have the following
small-T expansion

〈(x− 〈x〉)2k〉 =
〈〈[

p(1 − p)2k + (1 − p)p2k
]
(x1 − x2)2k

〉〉
+O(T 2) (25)

=
T

k

∫ +∞

0

dyy2kD(y) +O(T 2) (26)

where D(y) is defined as in (24). So the whole distribu-
tion D(y) is important to characterize the low tempera-
ture properties. The comparison with (6) shows that there
are a lot of cancellations in the disorder averages of the cu-
mulants. This phenomenon was already emphasized in [20]
for the random directed polymer.
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2.4 ‘Chaos’ in position at order T in temperature

Another interesting observables are the ‘chaos observ-
ables’ that contain information about the configurational
changes induced by temperature shifts. For instance,
among the various chaos observables that have been dis-
cussed for the Sinai model [25], the following quantity

dT1,T2 = (〈x〉T1 − 〈x〉T2)2 (27)

characterizes the change in the mean thermal position be-
tween two temperatures. Again, at order T in tempera-
ture, this quantity will be governed by configurations with
two nearly degenerate minima

d0,T =
〈〈

(1 − p)2(x2 − x1)2
〉〉

+O(T 2)

= (2 ln 2 − 1)
∫ +∞

0

dyy2D(y) +O(T 2). (28)

More generally, higher moments have the following tem-
perature expansion

(〈x〉T − 〈x〉T=0)2k =
〈〈

(1 − p)2k(x2 − x1)2k
〉〉

+O(T 2)

= Tmk

∫ +∞

0

dyy2kD(y) +O(T 2)

(29)

where

mk = 2
∫ 1

0

dw
w2k−1

(1 + w)2k
. (30)

One can also compute, in the limit where T1/T2 = z is
fixed and T1 → 0

(〈x〉T1 − 〈x〉T2 )2k = T1Mk(T1/T2)
∫ +∞

0

dyy2kD(y) (31)

with

Mk(z) = 2
∫ 1

0

dw

w

(w − wz)2k

(1 + w)2k(1 + wz)2k
. (32)

In particular, for a small change δT � T , the change in
position is characterized by the moments

(〈x〉T − 〈x〉T+δT )2k ∼ 2T
(
δT

T

)2k

×
∫ 1

0

dw
w2k−1

(1 + w)4k
(lnw)2k

∫ +∞

0

dyy2kD(y). (33)

2.5 Discussion

All quantities at order T in temperature may thus be ex-
actly computed with the simple effective thermal mea-
sure (12) where the statistics of the parameters (x1, x2, p)
is defined by (14). For the case of the ‘toy model’
(quadratic well plus Brownian potential), which present
the ‘statistical tilt symmetry’ we have already studied
in [19] the configurations with two nearly degenerate min-
ima and showed that they give the exact result at order T
for the generating function of thermal cumulants. We will
now consider models which do not present the statistical
tilt symmetry.

2.6 Explicit study of the Brownian potential on finite
sample

In this section, we consider a pure Brownian potential, i.e.
H0 = 0 in (5), on a finite sample x ∈ [0, L]. Many prop-
erties of this model have already been studied [23,26–29].
We first derive the exact thermal cumulants of the posi-
tion, and we then compare with the contribution of con-
figurations presenting two nearly degenerate minima.

2.6.1 Exact temperature series expansion for the thermal
cumulants of the position

The generating function of the disorder averages of ther-
mal cumulants is given by

ln〈e−λx〉 = lnZL(λ) − lnZL(0) (34)

where ZL(λ) represents the partition function with
source λ

ZL(λ) =
∫ L

0

dxe−λxe−βV (x). (35)

The full probability distribution of this partition func-
tion is exactly known [28,29]. For our present purposes, it
is simpler to work with the following formula in Laplace
transform with respect to the length L [29]

ω

∫ +∞

0

dLe−ωLlnZL(λ) = ln
(

1
β2σ

)
+ ψ(1)

+
2
ν2

(√
ν2 + a2 − a

)

−
[
ψ

(
1 +

√
ν2 + a2

2
+
a

2

)
+ ψ

(
1 +

√
ν2 + a2

2
− a

2

)]

(36)

where ψ(x) = Γ ′(x)
Γ (x) with the following notations

a =
λ

σβ2
(37)

ν =
2
β

√
ω

σ
. (38)

For completeness, a derivation of (36) via path-integrals
is given in Appendix A. To obtain the thermal cumulants,
we need to perform a series expansion in λ, i.e. in a = λ

σβ2

in formula (36). Since the only term odd in λ on the right
hand-side is simply (−a 2

ν2 ), we get

〈x〉 =
L

2
(39)

as expected by symmetry, and all other odd cumulants
identically vanish, as a consequence of the symmetry x→
L− x of the random potential V (x). We now consider the
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c4(T ) ≡ (〈x4〉 − 4〈x3〉〈x〉 − 3〈x2〉2 + 12〈x2〉〈x〉2 − 6〈x〉4) (44)

= − T 3L5/2

10
√
πσ3/2

+
π3/2T 5L3/2

12σ5/2
− π7/2T 7L1/2

8σ7/2
− ψ′′′′(1)

T 8

σ4
+O

(
T 9

σ9/2L1/2

)
. (45)

even cumulants. The cumulant of order two is given by

ω

∫ +∞

0

dLe−ωL(〈x2〉 − 〈x〉2) =
1

(σβ2)2

×
[

2
ν3

− 1
ν
ψ′
(
1 +

ν

2

)
− 1

2
ψ′′
(
1 +

ν

2

)]
. (40)

We may now expand in ν (38) to obtain the small temper-
ature expansion, which also corresponds to the large L ex-
pansion

∫ +∞

0

dLe−ωL(〈x2〉 − 〈x〉2) =
T 4

ωσ2

×
[

2
ν3

− π2

6ν
− ψ′′(1) +O(ν)

]
(41)

=
T

4
√
σω5/2

− π2T 3

12σ3/2ω3/2
− ψ′′(1)T 4

σ2ω
+O

(
T 5

σ5/2ω1/2

)
.

(42)
After Laplace inversion, the final result reads

c2(T ) ≡ (〈x2〉 − 〈x〉2)

=
T

3
√
πσ

L3/2− π3/2T 3L1/2

6σ3/2
− ψ′′(1)T 4

σ2
+O

(
T 5

σ5/2L1/2

)
.

(43)

Similarly, the cumulant of order 4 has the following
low-temperature expansion

See equation (44) above.

More generally, the leading contribution to the cumulant
of order (2k) reads:

c2k(T ) =
(−1)k+1Γ (k − 1

2 )
π(2k + 1)σk−1/2

T 2k−1Lk+1/2 + ... (46)

The final result is thus that at low temperature

ln〈e−λx〉 = −λL
2

+
Tλ2

6
√
πσ

L3/2 +O(T 3). (47)

Note that here the next correction is of order T 3. We will
now show that this result at order T exactly comes from
the configurations with two degenerate minima.

2.6.2 Study of configurations with two degenerate minima

It is straightforward to obtain that the probability to have
two degenerate minima situated at x1 < x2 for a Brownian

potential on [0, L] reads

P (E = 0, x1, x2) =
1

2π3/2
√
σ
√
x1(x2 − x1)3/2

√
L− x2

.

(48)
The total probability that it happens with a distance y

between the two minima reads

D(y) = θ(L− y)
∫ L−y

0

dx1P (E = 0, x1, x1 + y)

=
θ(L− y)√
4πσy3/2

(49)

with the following moments

∫ L

0

dyynD(y) =
Ln− 1

2

2
√
πσ
(
n− 1

2

) . (50)

This means that configurations with two degenerate min-
ima appear with a probability of order 1/

√
σL and that

the distance between the minima is of order L. In partic-
ular, the second moment

∫ L

0

dyy2D(y) =
L

3
2

3
√
πσ

(51)

exactly corresponds to the result (47) via (6).
The relation (26) for the moments yields

〈(x − 〈x〉)2k〉 =
T

k

∫ +∞

0

dyy2kD(y)

=
T

k

L(4k−1)/2

√
πσ ((4k − 1))

(52)

whereas the relation (28) reads

(〈x〉T − 〈x〉T=0)2 = TL
3
2
(2 ln 2 − 1)

3
√
πσ

+O(T 2). (53)

2.7 Explicit results for the biased Brownian potential
on the semi-infinite line

We now consider (5) with H0 = fx with f > 0 on the
semi-infinite line x ∈ [0,+∞[ [31]. Again, we compare ex-
act results with the contribution of configurations with
two nearly degenerate minima.
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2.7.1 Exact results for the thermal cumulants

The distribution of

Zf (λ) =
∫ +∞

0

dxe−λxe−β(fx+V (x)) = Z0(λ+ βf) (54)

is exactly known [28–31], and in particular we have [29,31]

lnZf (λ) = ln
(
T 2

σ

)
+

σ

fT + λT 2
− ψ

(
1 +

fT

σ
+
λT 2

σ

)

(55)
where ψ(x) = Γ ′(x)/Γ (x).

The expansion in λ yields the cumulants

c1(T ) ≡ 〈x〉 =
σ

f2
+
T 2

σ
ψ′
(

1 +
fT

σ

)

=
σ

f2
+
π2T 2

6σ
+O(T 3) (56)

c2(T ) ≡ 〈x2〉 − 〈x〉2

=
2Tσ
f3

− T 4

σ2
ψ′′
(

1 +
fT

σ

)

=
2Tσ
f3

− T 4

σ2
ψ′′(1) +O(T 5) (57)

c3(T ) ≡ (〈x3〉 − 3〈x2〉〈x〉 + 2〈x〉3)

=
6σT 2

f4
+
π2T 6

15s3
+O(T 7). (58)

More generally, the leading order at small temperature of
the cumulant of order k reads

ck(T ) =
k!σT k−1

fk+1
+ ... (59)

Finally, at order T , the exact series expansion of the gen-
erating function of the cumulants reads

ln〈e−λx〉 = −λ σ
f2

+
Tσλ2

f3
+O(T 2). (60)

We will now compare with the analysis of configurations
with two nearly degenerate minima.

2.7.2 Configurations with two degenerate minima

The distribution of the minimum x0 for the biased
Brownian potential on [0,+∞[ reads

Pmin(x0) =
f√
4πσ

∫ +∞

x0

dx

x3/2
e−

f2x
4σ . (61)

In particular, the first moment reads
∫ +∞

0

dx0x0Pmin(x0) =
σ

f2
(62)

in agreement with c1(T ) (58) at T = 0.

The probability to have two degenerate minima situ-
ated at x1 < x2 on [0, L] reads

P (E = 0, x1, x2) = Pmin(x1)df (x2 − x1) (63)

where the probability df (x) of return to the minimum
after a distance x reads

df (x) =
1√

4πσx3/2
e−

f2x
4σ . (64)

The total probability that it happens with a distance y
between the two minima reads

Df (y) =
∫ ∞

0

dx1P (E = 0, x1, x1 + y) = df (y)

=
1√

4πσy3/2
e−

f2y
4σ . (65)

In particular, the second moment reads
∫ ∞

0

dxx2Df (x) =
2σ
f3

(66)

and thus corresponds exactly to the result (60) via (6).
The relation (26) for the moments yields

〈(x− 〈x〉)2k〉 =
T

k

∫ +∞

0

dyy2kD(y)

=
T

k

Γ (2k − 1
2 )√

4πσ

(
4σ
f2

)2k−1/2

(67)

whereas the relation (28) reads

(〈x〉T − 〈x〉T=0)2 = T (2 ln 2 − 1)
2σ
f3

+O(T 2). (68)

2.8 Conclusion

We have shown on various explicit examples (the toy
model [19], the pure Brownian potential on a finite sam-
ple in 2.6, or the biased Brownian potential in Sect. 2.7)
how the thermal equilibrium properties of a particle in
one-dimensional potentials can be obtained at order T in
temperature from the statistical properties of configura-
tions with two nearly degenerate ground states. We will
now generalize this approach to a model with many de-
grees of freedom.

3 Low-temperature properties
of the 1D random-field Ising model

3.1 Model and notations

The Hamiltonian of the one-dimensional random-field
Ising chain reads

H = −J
N−1∑
i=1

SiSi+1 −
N∑

i=1

hiSi (69)
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A

B

A

B

A

Fig. 2. Picture of the ground-state: the zig-zag line represents
the renormalization of the random potential V (x) = 2

∑x
i=1 hi

seen by the domain walls, where only extrema separated by
∆V > 4J have been kept. Then all maxima are occupied by a
domain wall B(−|+), and all minima are occupied by a domain
wall A(+|−). So descending bonds are domains of + spins,
whereas ascending bonds are domains of − spins.

where the hi are independent random variables with zero
mean value hi = 0 and variance

h2
i = g. (70)

In the following we will moreover assume that the distribu-
tion of hi is continuous to avoid the presence of an exten-
sive number of degenerate ground states. The equilibrium
of this model can be studied in details via a Ma-Dasgupta
real-space RG approach [34] in the universal regime where
the Imry-Ma length [32], which represents the typical size
of domains in the ground-state of (69)

LIM ≡ 4J2

g
� 1 (71)

is large. A picture of the ground state is given in Figure 2.
The essential result that will be useful in the following
is that the joint distribution of the length l and the en-
ergy gain F = 2|∑i+l

j=i hj | of an Imry-Ma domain reads in
Laplace transform [34]

∫ +∞

0

dle−plPΓJ (F, l) = θ(F ≥ ΓJ)UΓJ (p)e−(F−ΓJ )uΓJ
(p)

(72)
where

ΓJ = 4J

UΓ (p) =

√
p
2g

sinhΓ
√

p
2g

uΓ (p) =
√

p

2g
cothΓ

√
p

2g
. (73)

The average length of domain walls is then exactly LIM

l =
∫
dF

∫
dllPΓJ (F, l) =

Γ 2
J

4g
= LIM (74)

i.e. the density of domain walls is simply nDW = 1/LIM .

B B

A

Fig. 3. Representation of a two-level excitation of type (a):
a domain wall A of the ground state may have two nearly
degenerate optimal positions, separated by a distance l if∆V =
2
∑l

i=1 hi ∼ 0.

3.2 Statistics of nearly degenerate excitations

The thermal excitations of nearly vanishing energy are
rare events of two kinds: they have been called rare events
of type (a) and of type (c) respectively in the previous
study on aging dynamical properties [34]. These two pos-
sibilities are the following:

(i) The excitations of type (a) involve a single domain
wall which has two almost degenerate optimal positions:
see Figure 3. From [33,34], we can obtain the probability
density ρa(E = 0, l) of these excitations in the scaling
region l ∼ LIM � 1 in terms of (72)

ρlarge
a (E = 0, l) =

1
LIM

∫ Γ

γ

dΓ0

∫ +∞

0

dl1PΓ0(Γ0, l1)

×
∫ +∞

0

dl2PΓ0 (Γ0, l2)δ(l − (l1 + l2)) (75)

where γ is a small cut-off. Indeed, as in the discussion
of the Brownian potential, the probability of degenerate
minima diverges at small distance in the continuum (49),
but the moments that appear in physical observables will
be well defined. Indeed, in Laplace transform, we have
using (73)

∫ +∞

0

dle−pl l ρlarge
a (E = 0, l)

=
1

LIM
(−∂p)

∫ Γ

0

dΓ0U
2
Γ0

(p) =
1

LIM
∂puΓ (p) (76)

=
1

LIMΓJ

[
2
3
LIM − 8

45
L2

IMp+O(p2)
]
. (77)

These excitations have thus indeed a length of order l ∼
LIM , but concerns only a small fraction of order 1/ΓJ

of the domain walls. After Laplace inversion, the length
distribution is given by an infinite sum of exponentials

ρlarge
a (E = 0, l) =

π2

ΓJL2
IM

+∞∑
n=1

n2e
−n2π2 l

2LIM . (78)
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Here, since we have a discrete model, the probability of
degeneracy is regularized by the lattice at small distances.
Indeed, nearly degenerate excitations of small length l ∼ 1
also exist. They are not described by the universal scaling
regime (78), but depend on specific properties of the initial
distribution P (hi). For instance, the excitations of length
l = 1 correspond to the domain walls that have a neighbor
with a small random field hi < T → 0. The density of
such excitations is simply proportional to the density n =
1/LIM of domain-walls in the ground-state, and to the
weight P (hi = 0) of the initial distribution at the origin

ρa(E = 0, l = 1) =
1

LIM
2P (hi = 0). (79)

More generally, the statistics of small excitations
l = 2, 3, ... is governed by the probabilities of returns to
the origin for a constrained sum of l of random variables.
For instance, the density of two-spin excitations reads, as-
suming the symmetry P (−h) = P (h)

ρa(E = 0, l = 2) =
1

LIM
2
∫ +∞

0

dhP 2(h). (80)

(ii) The excitations of type (c) involve a pair of domain
walls which can appear or annihilate with almost no en-
ergy cost: see Figure 4. These excitation have by definition
a large length l ∼ LIM � 1. From [33,34], their density
reads in terms of (72)

ρc(E = 0, l) =
1

LIM
PΓJ (ΓJ , l) (81)

i.e. in Laplace transform, we have more explicitly us-
ing (73)

∫ +∞

0

dle−plρc(E = 0, l) =
1

LIM
UΓJ (p) =

1
ΓJLIM

[
1 − 1

3
LIMp+

7
90
L2

IMp2 +O(p3)
]
. (82)

As in (77), these excitations of length l ∼ LIM concern
only a small fraction of order 1/ΓJ of the domain walls.
Again, after Laplace inversion, the length distribution is
given by an infinite sum of exponentials

ρc(E = 0, l) =
π2

ΓJL2
IM

+∞∑
n=1

(−1)n+1n2e
−n2π2 l

2LIM . (83)

In conclusion, there exists on one hand large excita-
tions of length l ∼ LIM � 1, whose universal probability
densities are given by the explicit expressions (78, 83), and
there are on the other hand small excitations of length
l ∼ 1, 2, ..., whose statistics depend on the initial random
field distribution, with the weights (79, 80) for l = 1 and
l = 2 for instance.

B

A

A

B

Fig. 4. Representation of a two-level excitation of type (c): a
pair (A, B) of neighboring domain walls separated by a dis-
tance l may appear or annihilate with almost no energy cost if
∆V = 2

∑l
i=1 hi ∼ 4J .

3.3 Effective Hamiltonian at order T in temperature

We note C0 = {S(0)
i } the true ground state, and we in-

dex by α = 1, 2, .., l the possible strings where the spins
(Siα , ..., Sjα) can be coherently returned with a small
amount of energy Eα ∼ T → 0, as a consequence of the
rare excitations (a) or (c) described above. These excita-
tions appear with a small probability at low temperature,
i.e. their are dilute, and the effective Hamiltonian at low-
temperature is thus given by

e−βheff = e−βE0


∏

j∈R

δ
(
Sj , S

(0)
j

) αmax∏
α=1

1(
1 + e−

Eα
T

)

×
(

jα∏
i=iα

δ
(
Si, S

(0)
i

)
+ e−

Eα
T

jα∏
i=iα

δ
(
Si,−S(0)

i

))
(84)

where E0 = H(C0) is the energy of the ground state con-
figuration and where R is the set of all the spins j that
are outside all the strings α.

3.4 Specific heat at low temperature

At low temperature, the effective partition function (84)
is thus given by a product over independent two-level ex-
citations with respect to the ground state

Zeff (T ) ∼ e−βE0
∏
α

(
1 + e−

Eα
T

)
. (85)

The free-energy per site reads in the thermodynamic limit
thus reads

f(T ) = −T lim
N→∞

1
N

lnZeff

= e0 − T

∫ +∞

0

dEρ(E) ln
(
1 + e−

E
T

)
(86)
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where the ground state energy e0 = −J − g/(2J) was
already discussed in [34], and where ρ(E) represents the
probability density of excitations of all types and of all
sizes

ρ(E) =
∑

l

[ρa(E, l) + ρc(E, l)] . (87)

The linear term in temperature of the specific heat is di-
rectly related to the density of excitations at zero-energy

C(T ) = T
π2

6
ρ(E = 0) +O(T 2). (88)

3.5 Edwards-Anderson order parameter

We now consider the generating function of the thermal
fluctuations of a given spin Sk

Zeff (λ) ≡ ln〈e−λKSk〉 (89)

lnZeff (λk) =
〈〈

αmax∑
α=1

θ(iα ≤ k ≤ jα) ln

(
1 + e−

Eα
T e2λkS

(0)
k

)
(
1 + e−

Eα
T

)
〉〉

.

(90)

where 〈〈..〉〉 denotes the average with respect to the prop-
erties of the nearly-degenerate strings α. Using now S

(0)
k =

±1 and the results of (22) for the average over the ener-
gies Eα, we get

ln〈e−λkSk〉 = Tλ2
k

∫ +∞

0

dl lρ(E = 0, l) +O(T 2). (91)

The thermal fluctuations of a spin are thus directly pro-
portional to the probability

∫ +∞
0

dl lρ(E = 0, l) that the
spin belongs to a nearly degenerate excitation. In particu-
lar, since S2

k = 1, the Edwards-Anderson order parameter
reads

qEA ≡ 〈Sk〉2 = 1−2T
∫ +∞

0

dl lρ(E = 0, l)+O(T 2). (92)

The vanishing of higher cumulants in (91) yields further
identities, the first ones being for instance

〈Sk〉4 =
4〈Sk〉2 − 1

3
+O(T 2)

= 1 − 8
3
T

∫ +∞

0

dl lρ(E = 0, l) +O(T 2) (93)

〈Sk〉6 =
30〈Sk〉4 − 17〈Sk〉2 + 2

15
+O(T 2)

= 1 − 46
15
T

∫ +∞

0

dl lρ(E = 0, l) +O(T 2). (94)

3.6 Susceptibility

We now consider the global magnetization

m =
1
N

N∑
i=1

Si (95)

and the generating function of its thermal fluctuations

Zeff (λ) ≡ ln〈e−λm〉. (96)

The effective Hamiltonian at order T in temperature (84)
yields the following partition function with source λ

Zeff (λ) =
∑

Si=±1

e−βheff −λm

= e−
λ
N

∑N
i=1 S

(0)
i

αmax∏
α=1

(
1 + e−

Eα
T e2

λ
N εαlα

)
(
1 + e−

Eα
T

) (97)

where εα = sgn(S(0),α
i ) = ±1 with probabilities (±1). We

thus obtain

lnZeff (λ) =

〈〈
l∑

α=1

ln

(
1 + e−

Eα
T e2

λ
N εαlα

)
(
1 + e−

Eα
T

)
〉〉

(98)

where 〈〈..〉〉 denotes the average with respect to the prop-
erties of the nearly-degenerate strings α. Using now the
results of (22) for the average over the energies Eα, we
finally get

lnZeff (λ) = T
λ2

N

∫ +∞

0

dl l2ρ(E = 0, l) +O(T 2). (99)

In particular, the average susceptibility reads

χ ≡ N

T

(
〈m2〉 − 〈m〉2

)
= 2

∫ +∞

0

dl l2ρ(E = 0, l) +O(T )

(100)
so the excitations appear here with a weight l2.

The susceptibility (100) we have just obtained from
the analysis of the thermal fluctuations of the magneti-
zation at linear order in T may also be recovered from
the analysis of the response to an external field H at zero
temperature.

Indeed, suppose we start from the ground state at
H = 0, and we turn on a small external field H > 0. The
changes in the ground state will be localized on the nearly
degenerate excitations of small energy E > 0 and length l
such that the new energy in field allows to decrease the
energy EH = E−2Hl < 0: the flip of this excitation yields
a change of m = l in the magnetization. As a consequence,
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the total magnetization per spin is given by

M(H,T = 0) =
∫ +∞

0

dl

∫ 2Hl

0

dEρ(E, l)l

�
H→0

2H
∫ +∞

0

dl l2ρ(E = 0, l) (101)

in agreement with (100), as it should to recover the
Fluctuation-Dissipation theorem.

3.7 Discussion: the role of small/large excitations
on various observables

Since there are two kinds of excitations, the small ones
l ∼ 1 and the large ones l ∼ LIM , and since various
observables are governed by the nearly degenerate excita-
tions with various weights involving their lengths, it is now
interesting to discuss which observables are dominated by
small excitations, and which observables are governed by
large excitations.

To simplify the discussion, and to compare with the ex-
isting rigorous results [22], we now consider that the initial
distribution P (hi) of the random fields has the following
scaling form

P (hi) =
1
H

P
( |hi|
H

)
(102)

where P(x) is a continuous function, such as for instance
the exponential distribution P(x) = e−x/2 considered
in [22] among other cases. The Imry-Ma length then reads

LIM =
4J2

g
=

4J2

H2
∫ +∞
0

dxx2P(x)
∼ (cte)

J2

H2
. (103)

The density of large scale excitations scales as ((77)
and (82))

ρlarge(E = 0) = ρlarge
a (E = 0) + ρlarge

c (E = 0)

∼ 1
LIMΓJ

=
g

16J3
∼ H2

J3
. (104)

On the other hand, the weight of the smallest excitations
l = 1 and l = 2 reads (79, 80)

ρa(E = 0, l = 1) =
1

LIM

2P(0)
H

(105)

ρa(E = 0, l = 2) =
1

LIM

2
∫ +∞
0 dxP2(x)

H
. (106)

So even if the initial distribution has a hole at zero field
P(0) = 0, since the prefactor

∫ +∞
0 dxP2(x) of excitations

of length l = 2 cannot vanish, the density of small excita-
tions has always for scaling

ρsmall
a (E = 0) =

1
HLIM

∼ H

J2
. (107)

In the regime we consider, where the Imry-Ma length is
very large LIM � 1, the density of small excitations (107)

is thus much bigger than the density of large excita-
tions (104)

ρsmall
a (E = 0) � ρlarge(E = 0). (108)

As a consequence, the specific heat (88) is governed by the
density of these small excitations (107)

C(T ) = T
π2

6
ρ(E = 0) +O(T 2) ∼ Tb

H

J2
+ ... (109)

where the numerical coefficient b depend upon the form
of the initial distribution via the prefactors of the densi-
ties of small excitations (106). The leading behavior (109)
is indeed in agreement with the exact results obtained
via the Dyson-Schmidt method for various models of the
form (102).

Let us now consider the Edwards-Anderson order pa-
rameter (92): the density of large excitations weighted by
their lengths has for expression (77, 82)

∫ +∞

0

dl l
[
ρlarge

a (E = 0, l) + ρc(E = 0, l)
]

=

1
ΓJ

(
2
3

+
1
3

)
=

1
ΓJ

=
1
4J

(110)

whereas the contribution of small excitations (79, 80) has
the same scaling as the density of small excitations (107)

∑
l=1,2,···

lρa(E = 0, l) = ρa(E = 0, l = 1)

+ 2ρa(E = 0, l = 2) + · · · ∼ H

J2
. (111)

In the regime we consider, where the Imry-Ma length is
very large LIM � 1, the Edwards-Anderson order pa-
rameter (92) is thus dominated by the large excitations
contribution (110) and reads

1 − qEA = 2T
∫ +∞

0

dl lρ(E = 0, l) +O(T 2) ∼ T

2J
+ ...

(112)
Let us now consider the susceptibility (100): the den-

sity of large excitations weighted by the square of their
lengths has for expression (77, 82)

∫ +∞

0

dl l2
[
ρlarge

a (E = 0, l) + ρc(E = 0, l)
]

=

LIM

ΓJ

(
8
45

+
7
45

)
=
LIM

3ΓJ
=

J

3g
∼ J

H2
(113)

whereas the contribution of small excitations (79, 80) has
the same scaling as the density of small excitations (107)

∑
l=1,2,···

l2ρa(E = 0, l) = ρa(E = 0, l = 1)

+ 4ρa(E = 0, l = 2) + · · · ∼ H

J2
. (114)
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In the regime we consider, where the Imry-Ma length is
very large LIM � 1, the disorder averaged susceptibil-
ity (100) is thus dominated by the large excitations con-
tribution (113) and reads

χ(T = 0) � 2J
3g
. (115)

This result is in agreement with the following exact result

χ(T = 0) =
2J

3H2

[
1 +O

(
H

J

)]
(116)

obtained via the Dyson-Schmidt method [22] for the
case (102) with the symmetric exponential distribution
P(x) = e−x/2.

As a final remark, we may mention the case of dis-
crete distributions for the initial disorder, such as the bi-
nary case for instance hi = ±h. The physics is completely
different, because the nearly degenerate excitations that
exist for continuous distributions become now exact de-
generacies: the entropy thus become finite at zero temper-
ature [5], instead of a unique ground state, but now there
is a gap in low-energy excitations [5].

4 Conclusion

In this paper, we have shown explicitly on two kinds
of 1D disordered models how the analysis of the low-
temperature properties in terms of two-level excitations
allows to fully recover the exact results obtained indepen-
dently. In particular, we have obtained that the thermal
fluctuations of a particle in 1D random potentials are en-
tirely due to the rare samples presenting two nearly de-
generate minima, whereas the properties of the random
field Ising chain are controlled by the rare regions that
can coherently flip with a vanishing energy cost. We have
also explained how the identities on thermal cumulants
that are valid for systems presenting a statistical tilt sym-
metry [17] actually hold more generally for various ob-
servables at order T in temperature, as a result of the
statistical properties of two-level excitations. Finally, for
the random-field Ising chain, our analysis shed light on the
influence of small/large excitations on various observables:
the specific heat is dominated by small non-universal exci-
tations that are more numerous, whereas the the suscep-
tibility and the Edwards-Anderson order parameter are
dominated by universal large excitations, whose length is
of order Imry-Ma length: these excitations are rarer than
the small ones, but involve a larger number of spins.

In conclusion, since the phenomenology of two-level
excitations is very often advocated in the field of disor-
dered systems, we hope that the present detailed study
on 1D models is useful to strengthen these ideas. More-
over, since the identification of the sample-dependent two-
level excitations and the characterization of their statis-
tical properties leads to a very clear picture of the low
temperature physics, we hope that other classical disor-
dered systems will be analyzed in the same way in the
future.

Concerning disordered quantum systems, the situation
seems of course much more complicated since the low-
temperature behavior of the specific heat is still under
active debate [9–11] and needs to be clarified.

It is a pleasure to thank G. Biroli, T. Garel, J. Houdayer, J.M.
Luck and O. Parcollet for useful discussions.

Appendix A: Exact results for the Brownian
potential on a finite interval

A.1 Basic path-integral

To study the equilibrium of a particle in a Brownian finite
sample, we need the following path-integral

G(u, l|u0) =
∫ U(l)=u

U(0)=u0

DU(y)e−
1
4σ

∫ L
0 dy( dU

dy )2−q
∫ L
0 dye−βU(x)

(A.1)
whose Laplace transform with respect to l has been given
in [23] in terms of Bessel functions

Ĝ(u, p|u0) =
2
βσ

Kν

(
2
β

√
q

σ
e−

βu
2

)
Iν

(
2
β

√
q

σ
e−

βu0
2

)

if −∞ < u ≤ u0 < +∞ (A.2)

Ĝ(u, p|u0) =
2
βσ

Kν

(
2
β

√
q

σ
e−

βu0
2

)
Iν

(
2
β

√
q

σ
e−

βu
2

)

if −∞ < u0 ≤ u < +∞ (A.3)

where ν = 2
β

√
p
σ .

A.2 Generating function of the thermal cumulants

The generating function of the distribution of the partition
function with source (35) may be computed in terms of the
path-integral (A.1) as follows

e−qZL(λ) =
∫ +∞

−∞
du

×
∫ U(L)=u

U(0)=0

DU(y)e−
1
4σ

∫ L
0 dy( dU

dy )2−q
∫ L
0 dye−λx−βU(x)

(A.4)

= e
− λ2

4σβ2 L
∫ +∞

−∞
dve

λ
2βσ v

×
∫ V (L)=v

V (0)=0

DV (y)e−
1
4σ

∫
L
0 dy(dV

dy )2−q
∫

L
0 dye−βV (x)

(A.5)

= e
− λ2

4σβ2 L
∫ +∞

−∞
dve

λ
2βσ vG(v, L|0) (A.6)
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so that in Laplace with respect to L, we get using (A.3)

∫ +∞

0

dLe−ωLe−qZL(λ) =

∫ +∞

−∞
dve

λ
2βσ vĜ

(
v, ω +

λ2

4σβ2
|0
)

(A.7)

=
4
β2σ

Tρ,a(s) (A.8)

where

Tρ,a(s) ≡ saIρ(s)
∫ +∞

s

dz

z1+a
Kρ(z)

+ saKρ(s)
∫ s

0

dz

z1+a
Iρ(z) (A.9)

with the notations

s =
2
β

√
q

σ
(A.10)

ρ =
√
ν2 + a2 (A.11)

and where a and ν have defined in (38).
To obtain the moments

∫ +∞

0

dLe−ωLe−qZL(p) =

+∞∑
n=0

(−q)n

n!

∫ +∞

0

dLe−ωL[ZL(p)]n (A.12)

we need to expand (A.8)in q, i.e. to expand the func-
tion (A.9) at all orders in s. The properties of Bessel
functions (differential equation and wronskian) leads to
the following differential equation for (A.9)

T ′′
ρ,a(s) =

2a− 1
s

T ′
ρ,a(s) +

[
1 +

ρ2 − a2

s2

]
Tρ,a(s) − 1

s2
.

(A.13)
Inserting the series expansion

Tρ,a(s) =
+∞∑
m=0

αms
m (A.14)

into the differential equation (A.13), one finds α2n+1 = 0
α0 = 1/µ2 and the recurrence

α2n =
α2n−2

(2n− a)2 − ρ2
(A.15)

leading to

α2n =
Γ
(
1 − ρ

2 − a
2

)
Γ
(
1 + ρ

2 − a
2

)
µ24nΓ

(
n+ 1 − ρ

2 − a
2

)
Γ
(
n+ 1 + ρ

2 − a
2

) .
(A.16)

So we obtain the Laplace transform of all moments

∫ +∞

0

dLe−ωL[ZL(p)]n =
(

4
β2σ

)n+1

(−1)nn!α2n (A.17)

=
1
ω

(
1
β2σ

)n

Γ (n+ 1)

× Γ
(
1 + ρ

2 − a
2

)
Γ
(

ρ
2 + a

2 − n
)

Γ
(
n+ 1 + ρ

2 − a
2

)
Γ
(

ρ
2 + a

2

)
(A.18)

in agreement with [29] and analytic continuation in n→ 0
yields the result (36) given in the text.
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